Термического разложения



а) свойствами сжиженного газа, имеющего очень высокий коэффициент термического расширения жидкой фазы, что необходимо учитывать при заполнении резервуаров;.-ни в коем случае не допускается их наполнение сверх установленного предела, а также превышение температуры внутри хранилища. Емкости должны наполняться с учетом возможных колебаний температур так, чтобы над уровнем жидкой фазы всегда оставалась паровая подушка;

Неправильное использование расширительных камер послужило непосредственной причиной катастрофы в Фликсборо, которая обсуждается в гл. 9 и 13. Эти камеры при правильной эксплуатации повышают безопасность, забирая избыточный объем за счет термического расширения. Однако у них более тонкие стенки, чем у трубопроводов, подключенных к ним. Поэтому они легче повреждаются при механическом воздействии. Когда нагрузка распределяется "не по оси", то камера начинает вибрировать, как было на одиннадцатой тарелке в Фликсборо [Flixborough,1975; Teddington,1974].

Места изменения геометрии трубопровода, такие, как изгибы, ответвления, сужения, значительно менее надежны, чем собственно трубопровод, поскольку они обычно изменяют направление потока или имеют сужения, которые могут приводить к эрозии. Хотя трубки малого диаметра работают, например, в манометрах, они частично подвергаются механическим повреждениям. В работе [High,1982] сообщалось об аварии 18 апреля 1982 г. в Эдмонтоне (Канада), в которой компрессорная, а так же здание операторной и ряд других объектов на территории предприятия были разрушены в результате разрыва соединения манометра с такой трубкой. Прямая трубка тоже уязвима. Она может лопнуть из-за гидравлического разрыва, механического повреждения (в движущихся частях) или от термического расширения или сжатия.

С учетом различия значений коэффициентов термического расширения в реальных (в случае движущейся автоцистерны) и лабораторных условиях можно считать совпадение реального и расчетного времени чисто случайным. Следует также отметить, что механизм теплопередачи для реальной ситуации (когда цистерна заполнена на 95 - 100%) отличается от такового в эксперименте (когда цистерна была заполнена примерно наполовину).

Эти соображения распространяются и на коэффициент вязкости. Поскольку п ~ ЦТ вследствие термического расширения газа, при р = const

Поскольку величина Ф за пределами сравнительно узкого температурного интервала мала, при учете термического расширения можно приближенно принимать Т0/Т «* Т0/Т, [283]. Это дает

Явление сверхвысокого роста давления при детонации ацетилена пока не получило общепринятого объяснения. Согласно [445], при сгорании в закрытой трубе этот эффект обусловлен возникновением детонации при таком состоянии сгорающего газа, когда его статическое давление больше начального, вследствие термического расширения после сгорания большей части заряда. Это возможно только в определенном диапазоне длин трубы: в слишком коротких трубах разгон пламени недостаточен для возникновения детонации, в достаточно длинных — при переходе к детонации статическое давление мало отличается от начального. Согласно [436], сверхвысокий рост давления обусловлен воспламенением ацетилена не в падающей (где разогрев недостаточен), а в отраженной от торца трубы ударной волне. Напомним также, что вопрос о фактической реализации высокого давления в падающей волне, соответствующего состоянию (на прямой Михельсона),

В работах [520, 521] решение (12.8) было уточнено с учетом изменения концентрации недостающего компонента при подобии полей концентрации и температуры (3.55), которое с известными отличиями справедливо и для данной задачи. Поскольку Ф мало за пределами сравнительно узкого температурного интервала, для учета термического расширения можно приближенно принять To/T^To/Ts,
— правильности установки закладных частей для подвижных и неподвижных опор и компенсаторов термического расширения.

При отсутствии проходов между боковой стеной котла и стеной здания котельной обмуровку котла нельзя вплотную примыкать к стене, так как из-за термического расширения материала обмуровки возможно разрушение обмуровки или стены здания. Она должна отстоять от степы здания не менее чем на 70 мм.

При отсутствии проходов между боковой стеной обмуровки котла и стеной здания котельной обмуровка котла (во избежание разрушения ее или стены здания вследствие термического расширения материала обмуровки) •не должна вплотную 'примыкать к стене, а должна отстоять от нее не менее чем на 70 мм.
После сбора отходы подвергаются переработке, утилизации и захоронению. Перерабатываются такие отходы, которые могут быть полезны. Например, отработанные масла очищают от продуктов коррозии, абразивного износа, взвешенных частиц иного рода, продуктов термического разложения, вводят присадки и получают масла для повторного использования. Отходы животноводства, птицеводства, осадки коммунально-бытовых сточных вод, не содержащие тяжелых металлов, могут быть переработаны и использованы в качестве экологически чистых удобрений. Для этого используются различные способы: биотехнологический (компостирование), химический (аэробный и анаэробно-аэробный), физический (термическая сушка). Отходы ре-зино-технических изделий, в частности автомобильных шин, подвергают измельчению и вновь отправляют на изготовление этих изделий. Ртутные дуговые и люминесцентные лампы подвергают демеркуризации и получают ртуть. Отработанное на атомных станциях ядерное горючее перерабатывают на радиохимических заводах с целью выделения плутония-239 и урана-235 для дальнейшего использования в ядерных реакторах и других целей.

жидкими, газообразными, а также аэровзвесями горючих веществ (жидких и твердых) в окислительной среде (часто в воздухе). Твердые и жидкие взрывчатые вещества в большинстве случаев относятся к классу конденсированных взрывчатых веществ (ВВ). При инициировании взрыва в этих веществах с огромной скоростью протекают экзотермические окислительно-восстановительные реакции или реакции термического разложения с выделением тепловой энергии. Газообразные взрывчатые вещества представляют собой гомогенные смеси горючих газов (паров) с газообразными окислителями—воздухом, кислородом, хлором и др. Взрывоопасные аэровзвеси состоят из мелкодисперсных частиц горючих жидкостей (туманов) или твердых веществ (пылей) в окислительной среде, чаще всего в воздухе.

Из всех аварий на станциях растворенного ацетилена наиболее сильные разрушения вызывали взрывы ацетилена в поршневых ацетиленовых компрессорах фирмы «Вюрцен» в результате поломки клапанных,пружин и в осушительных батареях вследствие прекращения действия осушителя (твердого хлористого кальция) и образования больших объемов ацетилена в условиях высокого давления (2,5 МПа). Поскольку сжатие и обезвоживание ацетилена сопровождается повышением его взрываемости, при компри-мировании и осушке газа следует всегда учитывать возможность термического разложения ацетилена в аппаратуре; необходимо постоянно совершенствовать средства безопасности и широко использовать блоки адсорбционной осушки на алюмогеле.

Первоочередной и неотложной задачей, которую необходимо решить для дальнейшего повышения надежности работы производства, является прежде всего предупреждение термического разложения ацетилена в аппаратах и ацетиленопроводах. Для уменьшения взрывоопасное™ циркулирующего в системе ацетилена необходимо организовать его разбавление инертным газом до безопасных пределов в соответствии с применяемым давлением; установить безопасный режим давления ацетилена в системе димеризации, при котором исключается распространение по всей массе газа где-либо начавшееся его разложение; повысить эффективность очистки ацетилена от кислорода; осуществить обескислороживание воды, поступающей в производство моновинилацетиле-на; установить непрерывный контроль содержания кислорода в газообразных и жидких средах.

Необходимо также учитывать многолетний опыт организации безопасных условий труда, опыт работы передовых предприятий. Например, одной из основных причин аварий при щелочной очистке и осушке ацетилена является образование внутри аппаратов больших объемов взрывоопасного газа и термического разложения ацетилена. Поэтому во многих производствах щелочная осушка заменена сернокислотным методом очистки и осушки ацетилена в скрубберах, что исключает образование больших объемов взрывоопасных газов и термическое разложение ацетилена в осушителях.

Смазочные масла попадают в аппараты из воздушных поршневых компрессоров и поршневых детандеров, для смазки цилиндров которых применяют масла. При работе воздушных компрессоров в цилиндрах увеличиваются давление и температура. В этих условиях масло под влиянием кислорода окисляется, а сжимаемый воздух насыщается продуктами химического и термического разложения. Кроме того, значительное количество капельного масла и паров увлекается сжимаемым воздухом со стенок цилиндров компрессоров в холодильники и нагнетательный трубопровод. Для очистки сжатого воздуха от масла и продуктов его разложения после концевого холодильника компрессора устанавливают влагомаслоотделитель, однако некоторое количество масел уносится потоками воздуха в теплообменники и разделительный аппарат. В цилиндрах детандеров происходят дополнительные загрязнения маслом расширяющегося воздуха.

Интенсификация тешюобменных процессов, в том числе и процессов выпаривания, обусловливает использование теплоносителя при более высоких температурах, чтобы побысить коэффициент теплопередачи и снизить удельную поверхность теплообмена. Для предотвращения термического разложения химических веществ при высоких температурах теплоносителей и предупреждения аварий процессы выпаривания термически нестабильных продуктов проводят под вакуумом. Проведение процесса под вакуумом требует высокой надежности системы. Важными условиями бесперебойной и безаварийной работы являются герметичность оборудования, глубина и постоянство вакуума. Падение вакуума или подсос воздуха в систему при образовании взрывоопасных смесей и высоких температурах теплоносителя могут привести к перегревам, загораниям и взрывам продуктов.

Аммиачная селитра является взрывчатым веществом с температурой плавления 169,6 °С. Она обладает низкой чувствительностью к инициирующим импульсам и крайне низкой — к детонационному импульсу; к механическим воздействиям она вообще не чувствительна. Например, чтобы вызвать детонацию в расплаве аммиачной селитры, необходим заряд вторичного взрывчатого вещества (ВВ) типа тротила массой десятки и сотни граммов. Давление же на фронте детонации вторичного ВВ составляет примерно 10 ГПа (100000 кгс/см2). При инициировании детонации осколком скорость последнего должна превышать 1500 м/с. Однако при сочетании ряда факторов возможны детонация и взрыв аммиачной селитры. Например, при нагреве в сосуде без отвода продуктов термического разложения селитра может взорваться. Она может детонировать также от ударов, возникающих при локальных взрывах других систем. Поскольку при производстве, хранении и транспортировке в обращении находятся огромные объемы аммиачной селитры, непринятие соответствующих мер предосторожности может привести к серьезным авариям.

Термическое разложение аммиачной селитры значительно ускоряется в присутствии азотной, серной и соляной кислот. Скорость термического разложения аммиачной селитры, содержащей 5% свободной азотной кислоты, при 200°С в 100 раз выше скорости разложения чистой аммиачной селитры. В присутствии кислоты снижается температура начала разложения селитры. При повышении содержания свободной кислоты до 1% температура начала активного разложения селитры снижается с 210 до 185—190 °С. Каталитическое действие на термическое разложение селитры оказывают примеси хлоридов, хроматов, соединения кобальта. При содержании хлоридов в селитре до 0,15% (в пересчете на ионы хлора) температура разложения снижается до 193 °С, а в присутствии 1% азотной кислоты она снижается до 180 °С; при этом скорость разложения увеличивается в два раза. Например, при нагревании смеси хлорида с селитрой до 220—230 °С последняя бурно разлагается с выделением большого количества тепла; при более высоком содержании хлорида происходит полное разложение селитры.

7. Возможность протекания побочных процессов полимеризации и термического разложения этилена при отклонениях температуры и давления от установленных технологией.

Как уже отмечалось, характерной особенностью процесса полимеризации под высоким давлением является возможность термического разложения этилена, сопровождаемого быстрым нарастанием давления и температуры с последующими разгерметизацией системы и воспламенением горючих газов на воздухе. Поэтому наряду с защитой от взрывов выбрасываемых газов в атмосферу следует принимать всесторонние меры по предупреждению термического разложения этилена в аппаратуре. Однако на практике аварии по этим причинам все еще случаются.



Читайте далее:
Токсичными соединениями
Трубопроводе соединяющем
Токсичность продуктов
Токсикология органических
Тонкораспыленном состоянии
Топочного пространства
Тормозными башмаками
Тормозного оборудования
Трансформаторы мощностью
Трансформаторами мощностью
Трансформаторных подстанциях
Трансформаторов напряжения
Трубопроводов диаметром
Транспорте предприятия
Транспортирующие устройства





© 2002 - 2008